Multiscale Modeling for Peptide Self-Assembly
نویسندگان
چکیده
منابع مشابه
A new multiscale algorithm and its application to coarse-grained peptide models for self-assembly.
Peptide self-assembly plays a role in a number of diseases, in pharmaceutical degradation, and in emerging biomaterials. Here, we aim to develop an accurate molecular-scale picture of this process using a multiscale computational approach. Recently, Shell (Shell, M. S. J. Chem. Phys. 2008, 129, 144108-7) developed a coarse-graining methodology that is based on a thermodynamic quantity called th...
متن کاملModeling through self-assembly
In this paper we explore a new paradigm for modeling geometric structures through self-assembly. This approach is inspired by the new emerging field of nano-technologies. At the very small nano-scales the laws of physics are different from the ones at the scales we are used to in daily life. Gravity is negligible and Brownian motion induced by heat is a crucial factor. In fact the latter provid...
متن کاملAtomic structures of peptide self-assembly mimics.
Although the beta-rich self-assemblies are a major structural class for polypeptides and the focus of intense research, little is known about their atomic structures and dynamics due to their insoluble and noncrystalline nature. We developed a protein engineering strategy that captures a self-assembly segment in a water-soluble molecule. A predefined number of self-assembling peptide units are ...
متن کاملChemical Reactions Directed Peptide Self-Assembly
Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biolo...
متن کاملNanosystem self-assembly pathways discovered via all-atom multiscale analysis.
We consider the self-assembly of composite structures from a group of nanocomponents, each consisting of particles within an N-atom system. Self-assembly pathways and rates for nanocomposites are derived via a multiscale analysis of the classical Liouville equation. From a reduced statistical framework, rigorous stochastic equations for population levels of beginning, intermediate, and final ag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2019
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2018.11.1648